Umkehrfunktion — Die Umkehrfunktion Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements … Deutsch Wikipedia
Umkehrfunktion — Ụm|kehr|funk|ti|on, die (Math.): inverse Funktion. * * * Umkehrfunktion, Mathematik: Funktion. * * * Ụm|kehr|funk|ti|on, die (Math.): inverse Funktion … Universal-Lexikon
Ableitung der Umkehrfunktion — Die Umkehrregel ist eine Regel der Differentialrechnung. Sie besagt, dass für eine umkehrbare (d. h. bijektive) Funktion f, die an der Stelle x differenzierbar ist und dort keine waagerechte Tangente besitzt, d.h. für die gilt, auch ihre… … Deutsch Wikipedia
Satz über die Umkehrfunktion — Der Satz von der impliziten Funktion ist einer der wichtigsten Sätze in der Analysis. Er beinhaltet ein relativ einfaches Kriterium, wann man eine implizite Gleichung oder ein Gleichungssystem (lokal) eindeutig auflösen kann. Inhaltsverzeichnis 1 … Deutsch Wikipedia
Inverse Abbildung — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… … Deutsch Wikipedia
Inverse Funktion — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… … Deutsch Wikipedia
Umkehrabbildung — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… … Deutsch Wikipedia
Umkehrfunktionen — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… … Deutsch Wikipedia
Cantor'sche Paarungsfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia
Cantorsche Tupelfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia